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Abstract. Two improvements for the algorithm of Breiman and Cutler are presented. Better 
envelopes can be built up using positive quadratic forms. Better utilization of first and second 
derivative information is attained by combining both global aspects of curvature and local aspects near 
the global optimum. The basis of the results is the geometric viewpoint developed by the first author 
and can be applied to a number of covering type methods. Improvements in convergence rates are 
demonstrated empirically on standard test functions. 
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1. Preliminaries 

INTRODUCTION 

The algorithm of Breiman and Cutler [3] is a global optimization method for 
multimodal, multivariate functions for which derivatives are available. When used 
for minimization, it requires a lower bound on the eigenvalues of the Hessian. 
Geometrically this bound provides global information about the degree of 
curvature of the downward bending parts of the function's graph. This bound is 
used together with the gradient to construct a lower envelope of the function's 
graph built up of paraboloids tangent at the points of function evaluation (see 
Figure 1). Successive function evaluations raise this envelope until the value of 
the global minimum is known to the required degree of accuracy. In [2] a 
variation of this method is described which ignores the gradient and uses a bound 
reflecting the local curvature of the graph at the global minimum (see Figure 2). 
In this paper these methods will be referred to as simple parabolically based 
algorithms or SPBA. 

This paper presents two new improvements. Firstly SPBA is generalized to 
handle more sophisticated envelopes built up of graphs of positive definite 
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Fig. 1. One dimensional illustration of SPBA using tangent parabolas to build lower 
envelope of function. 

quadratic forms. Secondly a new combination of acceleration techniques from [1] 
and [2] is applied to this generalization of SPBA and other related algorithms. 
Both of these modifications allow more detailed information about first and 
second derivatives to be utilized. In particular information about both the global 
nature of the downward bending parts of the graph and the local nature of the 
curvature at the global minimum are utilized effectively. The modifications are 
easily implemented, requiring only minor changes to the original implementation. 
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global minimum �9 evaluations 
Fig. 2. One dimensional illustration of SPBA ignoring the gradient using parabolas to build 
up an envelope containing the global minimum of f (since the lightly marked parabola fits 
over the global minimum, [2] showed, turned upside down, it can be used to build the 
envelope). 
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Zhigljavsky in [8] provides a good overview of currently known global 
optimization approaches. Table 1 of Chapter 1 of [8] summarizes the prior 
information about the class of objective functions required for various ap- 
proaches. The covering methods (of which SPBA is an example) are generally 
considered to require prior global smoothness conditions (such as (c') p. 5 of [8] 
which concerns bounds on the Hessian). Smoothness conditions only in the 
vicinity of the global minimum ((0) p. 7 of [8]) appear to be used primarily for 
random methods. It is worth noting this paper and [2] describe some covering 
methods appropriate to the latter prior conditions. Many of the ideas in this paper 
are applicable to covering methods in general, 

This section continues with notation and background details. Section 2 provides 
the extensions and accelerations to the SPBA. Section 3 relates this to the 
acceleration results in [l]. Section 4 provides some comparison tests. 

NOTATION AND BASIC PROBLEM 

This paper uses the same notation as [1]. The basic problem is to find the global 
minimum a and its location E = f -~ (a )  fl K of a function f :  K---~ ~ where K C Nn 
is a compact polytope. The epigraph of a function consists of all points on or 
above its graph. 

Let ZG be the set of all differentiable functions with global minimum having 
2 

zero gradient. Let Cu(B,) be the class of all twice differentiable functions such 
that h(x o + &x)=f(x0)+ Af(xo) 2~c + �89 2 is an upper bound at each point 
of the domain x 0 . Similarly let C~(Bt) have h(x o + ~x)=f (x0)+ Vf(x0) 2~x- 
�89 llzXx[I 2 as a lower bound at each point of the domain. For a given function the 
best bounds B~ and B~, respectively, are the maximum and negative of the 
minimum of the eigenvalues of the Hessian. Let L(M) be the class of Lipschitz 
continuous functions with constant M. 

BACKGROUND TO THE SIMPLE PARABOLICALLY BASED ALGORITHM 

The following general framework due to Piyavskii [6] is useful for describing a 
number of algorithms including SPBA: 

�9 Initialization: 
Ol l ~ -  O0 

i = - 1  
Take a user specified x0 from the domain K 

�9 Evaluation Step: 
Increment i 
Compute function value, f(xi) 
Compute gradient vector, V i =Vf(xi) 
a i = min{ai_l, f(xi)} 

�9 Update Envelope Function Step: 
Set hi(x ) = h(x; xi, f(xi), Vi) and let F~(x) = maxk= o . . . . .  ih~(x) 
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�9 Get Next Sample Point Step: 
x i + 1 = arg minxerFi(x ) 

�9 Termination Test: 
If minxerF~(x) is close to ozi stop, otherwise go back to the evaluation step. 

Provided hi(x ) ~ f ( x ) ,  the functions Fi(x ) are lower envelopes, and the global 
minimum is always between lowest value of the envelope, minxerF~(x), and the 
lowest known function evaluation, ozi- In this context, Piyavskii [6] showed that 
minxeKFi(x ) converges to oz. Different choices of hi(x ) determine specific algo- 
rithms [5, 7]. 

Within this framework two variations of simple parabolically based algorithms 
can be defined. 

First variation SPBA with bound B t 
T This variation uses hi(x ) = f(x,.) + V i (x - x l )  -�89 -xill 2. The constant B, must 

be chosen so hi(x ) <~f(x). This gives the algorithm of Breiman and Cutler [3] 
illustrated by Figure 1. Convergence follows from the general result in Piyavskii 
[6]. 

Second variation SPBA with bound B u and zero linear term 
This variation (see Figure 2 ) u s e s  hi(x)=f(x3-�89 2. Provided 

f(Xgm) + �89 -Xgm[[ 2 ~f (x )  for all x in the domain (here xg m is the location of 
the global minimum), Proposition 3.2 in [2] shows the method will work. Note, as 
remarked in [2], this does not lead to a lower envelope for f, however, the global 
minimum of F/(x) still provides a lower bound for the global minimum of f. 
Remark 5.3 of [2] observes the implementation of [3] works in this case by the 
simple expediency of taking the gradient always to be the zero vector. 

Geometrically, the set of points above or on the graph of F/(x) and below or on 
the hyperplane at height ozi form a bracket of the point(s) on the graph of f 
corresponding to the global minimum. In [3] the bracket is not explicitly used, 
however, updating the envelope and finding the arg min can be viewed as dealing 
with the bracket. The bulk of the work in the implementation of SPBA is at the 
Get Next Sample Point step, because this step is potentially as difficult as the 
original problem. Specific mathematical properties of hi(x ) facilitate efficient 
implementation. The idea in [3] is to keep track of all the local minima of the 
lower envelope, so the next sample point is the lowest of these local minima. 
Around the ith sample point is a region over which the envelope is hi(x ). Since 
hi(x ) -h~(x) is linear, this region is a polytope. Since hi(x ) is concave, the local 
minima of the envelope are located at vertices of the collection of polytopes. The 
implementation in [3] keeps track of the vertices and edges of the polytopes. 
Updating the vertex structure entails removing those vertices which are no longer 
needed and finding the vertices of the new polytope. Since f(xi§ >i Fi(xi§ the 
vertices to be removed can be found by moving along the edges of the polytopes. 



C O V E R I N G  M E T H O D S  U S I N G  D E R I V A T I V E S  333 

INTUITION BEHIND THE TWO VERSIONS OF SPBA 

The two versions of SPBA take advantage of completely different information. 
Intuitively both versions of SPBA build up the bracket from parabolic pieces. 
Blunt pieces work faster than sharp ones which mean the smaller the constants 
used by SPBA the better. For functions with an interior global minimum, the first 
version of SPBA works well when the downward bending parts of the graph are 
gently curved, while the second version (with zero linear term) works well on 
functions that are gently bending upwards at the global minimum. 

B A C K G R O U N D  TO ACCELERATIONS 

The geometric viewpoint developed in [2] is the keY behind the acceleration ideas 
presented in this paper. The viewpoint is that the bracket found by the algorithm 
occurs by removal of certain regions at each step. Modifications of an algorithm to 
use bigger removal regions produce accelerations. This is the basis of Propositions 
2 and 2' in this paper. 

The approach for describing the accelerations developed in [1] is used in this 
paper. It concerns the way the next sample point is used by the algorithm during 
the Update Envelope Function step. Replacement values x7 and fa(xi) which are 
easily computed from xi, f(xi) and V i are used to compute hi(x). Faster conver- 
gence results and the minimal extra computation does not affect the overheads of 
the algorithm. 

2. Modifying the Simple Parabolically Based Algorithm 

GENERALIZATION TO USE ARBITRARY PARABOLOIDS 

Referring to the general description in Section 1, observe for SPBA that hi(x ) = 
f(Xi) -1- L(x - x i )  --�89 - x i )  where L :V/r  or L = 0 and q(x) = nllxll  2 Other 
quadratic forms can be used to produce convergent methods: 

�9 Let L = V/r and use any quadratic form, q(x)= xrHx, such that hi(x ) <-f(x) 
holds. Piyavskii's condition guarantees convergence. 

�9 Use L = 0  and a quadratic form, q(x)=xrGx,  satisfying f(Xgm)+lq(x - 
Xgm) >~f(x) for all x in the domain (here Xgm is the location of the global 
minimum). As before, Proposition (3.2) in [2] shows the method will work 
although it does not lead to a lower envelope for f. 

The SPBA can be seen geometrically as removing regions which are translates of 
1 T the epigraph of the quadratic form - 7 x  Dx where D = BI is a diagonal matrix 

with the second derivative bound B on the diagonal. These regions are 
paraboloids with spherical horizontal cross sections. As noted in the bulleted 
remarks above, other quadratic forms give valid methods. We introduce two 
versions of a General Parabolically Based Algorithm. Let GPBA with P be the 
same as SPBA except that hi(x ) : f (xi)+ VT(x--Xi)-�89 In both cases 
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q(x) = xrPx. Interestingly, the implementation of SPBA described in [3] works if 
P is any positive definite matrix, so the algorithm handles removal of arbitrary 
paraboloids. 

PROPOSITION 1. Let H and G be positive definite matrices as described above. 
The implementation o f  SPBA,  with only the formula for hi(x ) changed as above, 
realizes (1) GPBA with H and (2) GPBA with G and zero linear term. 

Proof. The two requirements of Theorem 3.1 in [3] are hi(x ) -h i (x)  is linear in 
x and hi(x ) is concave. It is easy to verify that both of these conditions hold for 
(1) and (2). Additionally for efficient updating of the data structure ("finding the 
dead vertices") it is required that Fi(xi+l) ~f(xi+l). Since xi+ 1 = arg min F~(x) and 
Fi(x ) determines a bracket for the global minimum, we have Fi(X;+l) ~< a, and the 
required inequality holds. �9 

While the versions of SPBA require bounds on the eigenvalues of the Hessian, 
Proposition 1 shows how more detailed information about the Hessian can be 
used. The intuition discussed earlier is extended here, H reflects the curvature of 
the downward bending parts of the graph, while G reflects the upward bending 
part of the graph at the global minimum. Empirical tests in Section 4 show good 
choices of H and G make GPBA perform better than SPBA using the best 
possible bounds. 

ACCELERATIONS FOUND BY COMBINING REGIONS 

We show that the two types of regions relating to H and G can be combined to 
form a better region and thus take advantage of both aspects relating to the 
graphs curvature. Fortuitously this new region is also the translate of the epigraph 
of a positive definite quadratic form and can be handled by GPBA. 

The following key lemma provides the details. It describes the effect of sliding 
the epigraph of one positive definite quadratic form along the graph of another. 
Figure 3 illustrates this in the one dimensional case. 

LEMMA 2. Let H and G be positive definite matrices. Let S = (H + G )  -1 and 
Q = H r S r G S H +  GrSrHSG.  The epigraph of  the quadratic form xrQx is ob- 
tained by sliding the epigraph of  the quadratic form xr  Gx along the graph of  the 
quadratic form xr  Hx. 

Proof. Let g and h be the two quadratic forms represented by G and H 
respectively. Let q(x) be the lower envelope obtained by sliding the graph of g 
along h. We now show q(x) is a quadratic form with the required matrix. 

q(x) =min(g(x - y) + h(y)) 

=min ((x - y)rG(x - y) + yrHy) 
Y 
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g(x) . h(x) q(x) 

ili.i: iiil;:..:i!il,. . . . . .  ' 

Fig. 3. Sliding on paraboloid along another is enveloped by a paraboloid. 

Taking derivatives with respect to y, the minimum occurs when 2G(x - y) = 2Hy. 
Since H and G are positive definite, the sum is invertible, thus y = (H + G)-IGx.  
Using this value for y, gives q ( x ) = x r Q x  with Q = H r S r G S H  + GrSrHSG as 
required. �9 

The  following proposition shows that GPBA with Q from Lemma 2 and zero 
linear term can be used to give accelerated performance. 

P R O P O S I T I O N  2. Given a function f and positive definite matrices H and G 
as described. Let S = (H + G) -1 and Q = H r S r G S H  + GrSrHSG.  At  each iter- 
ation calculate replacement values x a = x i + H - I V f ( x i )  and fa(xi)=f(xi)+ 
�89 An  acceleration over both (1) and (2) of proposition 1 is 
obtained by using the replacement values during the Update Envelope Function 
step of  GPBA with Q and zero linear term. 

Before  providing the proof, it is worth looking at a few special cases. If H and G 
commute,  the formula simplifies to Q = HG(H + G) -1 . For  H = Bfl and G = BuI, 
the formula gives Q = [BlBu/(B l + Bu)]l. We state this special case and note that 
the replacement values are appropriate to other algorithms like [4] which use the 
same building blocks for the lower envelope. 

2 P R O P O S I T I O N  2'. Given a function f in the class C~(BI) tq Cu(Bu) fq ZG. Let 
B = BtBu/(B t + B,).  An acceleration is obtained by using the replacement values x7 
and fa(xl) during the Update Envelope Function step of  SPBA with B and zero 
linear term. Here x7 = x i + (1/B l)Vf(xi) and f a (X i) = f(xi) -b II Vf(x,)112 /(2B,). 
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Fig. 4. One-dimensional illustration for proof of Proposition 2. 

The proof using the geometric ideas developed in [1] and [2] identifies a bigger 
region that can be removed. 

Proof  o f  Proposition 2 (see Figure 4). Given H, G and Q as stated. Let h, g 
and q be the corresponding quadratic forms respectively. Let x a = x i + H-1Vf(xi)  
and fa (x i )=f (x i )+x(Vf (x i ) )TH-1Vf(x i )  as stated. During the Update Envelope 
Function step of G P B A  with H, the function hi(x ) is f(xi) + Vf(x - xi) - �89 - 
xi). Expressed in terms of the replacement values this is fa(xi) --�89 -xa). NOW 
H was chosen so hi(x ) <~f(x). So by proposition 3.2 of [2] at all points of the graph 
of hi(x), the regions below the translated graphs of - �89 can be removed, the 
union of these by Lemma 2 is the region below fa(xi)- 1 a q ( x - x  i). It is a 
paraboloid with maximum at (x a, f ( x i )  ) and contains the paraboloids used by the 
two methods mentioned in Proposition 1. So using the replacement values for 
G P B A  with Q and zero linear terms gives an acceleration over either method (1) 
or (2) of proposition 1. �9 

3. Relation to Other Algorithms and Accelerations 

If a Lipschitz bound M is available, the accelerations given in [1] are compatible 
with proposition 2'. 

A Lipschitz bound can be used in conjunction with second derivative bounds by 
S P B A  and related methods such as [4]. Note in the case of the Lipschitz bound 
going to infinity, the following reduces to proposition 2'. 

2 PROPOSITION 3. Given a function f i n  the class C~(Bt) O C . (B . )  N L(M)  O ZG.  
Let  B = B t B  u/(B t + Bu). A n  acceleration is obtained by using replacement values x7 
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and faoci) during the Update Envelope Function step o f  SPBA with B and zero 
linear term. Here x a = x i + (l/B1) Vf(xi) and 

I IlVf(xi)ll 2 B ( d i _  li)2 
f(xl) + 2B l + 2M 2 

[[Vf(xi)[[ 2 
fa(x~) [f(x~) + 2B t 

M = IlVf(xi)ll 2 
di = f(xi)  - oti and Ii = 2B 2B z 

d i > l i 

d i <- l i 

where 

Proof. The paraboloid which is the region below the graph of f a ( x i ) -  1 n  IIx- 
xal[ 2 is removed during the ith step of SPBA.  Using x~ and ff(x~) in place of xi 
and f(xi) in Proposition 5 of [1] gives the result. �9 

Algorithms using a Lipschitz bound can be modified to incorporate second 
derivative bounds and use the gradient. The algorithm of Mladineo [5] deals with 
Lipshitz continuous function in L(M).  It is an algorithm in Piyavskii's scheme 
with hi(x ) = f (x i )  - M I I x  -xill and for dimension one reduces to that of Piyavskii 
[6] and Shubert [7]. 

2 P R O P O S I T I O N  4. Given a function f i n  the class C2(Bt) N Cu(Bu) A L(M)  fq ZG. 
Let B = BtBu/(B z + Bu). When using the algorithm of  Mladineo, an acceleration 
using gradient information is obtained by using the replacement sample point 
(x~, f~(x)) during the Update Envelope Function step. Its coordinates are given by 

1 
xa ~" Xi + B I  Vf(xi) 

and 

I " M M 2 
o~i + ~ -  ~ / di < 2---- f f  

2 2 m 2 f"(x~) = 1,., . M IlVf(x311 
[ f t x i ) ' '~ - '~ ' ]"  ~ l  di>~2--ff 

where 

d i = f ( x i )  - a  i -1- 
IWf(x,)ll 2 

2Bt 

Proof. In the notation of [1] and using a slight extension of Lemma 2, it follows 
that the  MB-parabolically capped cone with apex at (xT, fa(xi) ) could be removed 
during the ith step of Mladineo's algorithm. Using x a and fa(xi) in place of x~ and 
f(x~) in Proposition 3 of [1] gives the result. �9 
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4. Comparisons 

The  results of this paper provide accelerations in a one-step sense. For a given 
iteration, using an acceleration always produces a better  bracket than not using it. 
Since the sequence of sample points used by these algorithms is determined by 
using the argminFi(x  ) at each step, using the accelerations will produce a 
different sequence of sample points, so on occasion will perform worse. We 
explore the convergence behaviour empirically. 

TESTING 

R A T F O R  implementation of SPBA and G P B A  were run with the various 
modifications for a number of standard test functions. Each iteration requires a 
function and gradient evaluation. Tests were stopped when both an absolute error  
measure was less than 0.01 and a relative measure was less than 0.0001. The tests 
of the acceleration of Mladineo's algorithm were carried out only by a discrete 
simulation (described in [2]). The particulars are summarized in Tables I , IV.  

The standard test functions are described in [3]. To illustrate the differences 
between using G and H, variants a - d  of EXP2 of the form f ( x , y ) =  
-"Tl'e -1/2(ax2+b(y-e)2) --(l- q'l')e -1/2(cx2+d(y+e)2) were used. EXP2 has circular con- 

tours, the variants have eliptical contours at the global minimum. EXP2b is highly 
\ 

curved at the global minimum. EXP2c and d have two local minimum. The 
contours around both .these look similar for EXP2c while they are quite different 
for EXP2d. Table V gives details. 

COMMENTS 

Five conclusions are apparent. 

�9 Proposition 2, 2' and 3 always provide substantial improvements.  The 
number  of iterations in right hand columns of Tables I and II are often half 
the size of the corresponding entries in the first two columns. 

Table I. Iterations to convergence using SPBA and its accelerations (Heavier shaded 
columns from methods presented in earlier references) 

Test 
parameters 

Reference 

EXP2 

COS2 

RCOS 

GW 

C6 

L = 0  

+ 

p op 2, ! 
7 

34 iiii~ii 
142 i~i ' 

445 ~ ! i l !  

105   ,i  iiiiiiiii i  iiiiiii,  
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Table II. Iterations to convergence using SPBA and GPBA (shaded) and its accelerations 

Test 
parameters 

Reference 

EXP2 

EXP2a 

EXP2b 

EXP2c 

EXP2d 

L=vT L=O 

,, B, ,[+iiiiii~++i.liii!iil B. i.i++++u:.+.i.i+i.~.i.i[i.l.i. 
t3+ iiiiiiiiie2,+/~++~ii+,,+++ ,, [2+ ~m.~.3 i++!iii+~+iiiii 
27 

44 

147 

76 

50 

L = 0  

B,B. / (S ,  + B.)iiiiiiiiiiiiii~iii+i+i!il 
prop 2' iiiiNNi 

i:iiiiiiiiiiiiiiii  iii++iiiii 53 iiiiiiiii:iiiiiiiiiiii :iiiiiiii+ii+iiiiiii 25 iiiiiiii+i i+iiiiiiiiiiii 
+++:+++++++i+++++~+;++++:+++++++++++ 261 ++}+++++:++:++++++++ii~++++++:++:++:++:++:+ 88 +++++++++++++++~+i+:+++++++i+ 

i.[[[[[[[+~+.[[[[++.+ 57 ++++++++++~+++ 33 ++++@+++++ +++ 

++++++++i++++++++++++.+++++++++++ 49 ++++[[[[[++++[++[[[[[[[+.+ ) 23 +[+:[[[+[++++}++++[+}" 

Table III. Iterations to convergence (discrete tests) (Heavier shaded column from method 
presented in earlier reference) 

Test Mladineo 
[1] prop 4 

EXP2 ~!i 
~Sg '"" g ~ + . : ~ ! ~ J  ~ ~ ;:: : : '  

cos2 ! ~ I ~ N . ~ ! < N +  

RCOS iiii N+ii+iiN!!i| 
GW 

Mladineo SPBA 
prop 4 prop 3 

8 7 

39 34 

123 100 

282 283 

55 79 

Table IV. Particulars for test functions (best bounds used) 

Test Domain Initial Lipshitz 

EXP2 (-1,  1) x ( -1 ,  1) 
COS2 (-1,1)  • ( -1 ,  1) 
RCOS (-5,10) • (0, 15) 
OW (-100,100) x (--100,100) 
C6 (-5,  5) x (-5,  5) 

Bu B+ B 
Point constant 

M 

(0.2, 0.2) 0.61 1 0.37 0.269 

(0.5, 0.5) 4.8 26.7 22.7 12.26 

(0, 5) 113.6 29.2 16.8 10.65 

(25, 25) 2.15 1.01 0.99 0.500 

(0, O) 5601 5628 8.93 8.92 

Table V. Variants of the EXP functions (all using same initial point and domain as EXP2 

Test +r a b ! c d e B ,  Bt G H 

EXP2 1 1 1 - 0 1 0.37 1.0 I .37 I 

EXP2a 1 4 16 ,-  0 16 7.14 1.0 D .446 D 

EXP2b 1 40 160 - 0 160 71.2 10 D 4.45 D 

EXP2c .55 4 16 4 16 .5 8.77 6.51 .58 D .407 D 

EXP2d .55 4 16 16 4 .5 8.07 4.23 .82 D .399 E 

Note: D=diag(4 ,  16), E=diag(9.4,  10.6). 
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�9 G P B A  using other positive definite matrices often shows marked improve- 
ment over S P B A  using multiples of the identity as seen by comparing shaded and 
unshaded entries in Tables II. 

�9 EXP2a and EXP2b reflect the differences in using G and H (rows 2 and 3 of 
Table II). EXP2a is gently curved at the global minimum so using G is better than 
H, while EXP2b is strongly curved and H works better. 

�9 The use of the Lipschitz constant M (the darker halves of the columns in 
Table I) usually has no effect. Those accelerations using M take effect only if 
there is a large drop in value, and thus help only in the early stages of an 
algorithm. For RCOS and C6 this minimal drop is nearly the overall distance 
from minimum to maximum, so acceleration hardly occurred. For GW the 
minimal drop is quite small, the replacement values were often used, and the 
improvement is quite marked. Note sometimes these "accelerations" produced 
marginally poorer results. This is due to the fact that different samples sequences 
were produced. When repeated trials averaged over many different initial points 
were done, the accelerations were never worse. 

�9 Both Mladineo's and the second author's algorithms when fully utilizing first 
and second derivative information give very similar results as shown by the 
similarity of columns 2 and 3 in Table III. 

Concerning the discrete tests done for Mladineo's algorithm, note column 3 of 
Table III and the shaded part of column 3 of Table I test the same method. 
Likewise the heavily shaded results of Table I were done with discrete testing in 
[1]. The values are comparable and confirm that the discrete testing gives similar 
results to the actual running of the algorithms. The problem relates to differences 
in the stopping criterion. Discrete testing is appropriate for comparison testing 
shown in Table III. 

CONCLUSIONS AND FUTURE DIRECTIONS 

We have demonstrated two ways of improving the performance of some global 
optimization methods. The algorithms were easily modified to utilize fully both 
first and second derivative information. 

A drawback of many methods that use bounds on first or second derivatives, 
including the ones presented here, concerns the calculation of the bounds. 
Finding good ones is often an equally difficult global optimization as the original. 
Work in this direction is needed. Local bounds appropriate to small regions in the 
domain are sometimes easier to obtain. So one area for future work appropriate 
to G B P A  concerns incorporating subdivision of the domain, a modification that 
would readily lend itself to parallel computing. 
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